Acoustic Tweezers Create Living Cell Grid

An 'acoustic screwdriver' fabricated on a single chip can position dozens of tiny objects or even living cells in a pre-defined grid. The pattern can be imposed in just a few seconds at very low power. This technology could be used in fields like tissue engineering, cell studies and drug screening and discovery.

The acoustic tweezers are manufactured by fabricating an interdigital transducer onto a piezoelectric chip surface. These transducers are the source of the sound. Next, using standard photolithography, microchannels are fabricated in which a small amount of liquid with the cells or particles can move around freely. These microchannels were bonded to the chip to create the area for particle movement.


(Acoustic tweezers enable flexible on-chip manipulation
and patterning of cells using standing surface acoustic waves)

Acoustic tweezers differ from eyebrow tweezers in that they position many tiny objects simultaneously and place them equidistant from each other in either parallel lines or on a grid. The grid configuration is probably the most useful for biological applications where researchers can place stem cells on a grid for testing or skin cells on a grid to grow new skin. This allows investigators to see how any type of cell grows.

Acoustic tweezers work by setting up a standing surface acoustic wave. If two sound sources are placed opposite each other and each emits the same wavelength of sound, there will be a location where the opposing sounds cancel each other. This location can be considered a trough. Because sound waves have pressure, they can push very small objects, so a cell or nanoparticle will move with the sound wave until it reaches the trough where there is no longer movement. The particle or cell will stop and "fall" into the trough.

If the sound comes from two parallel sound sources facing each other, the troughs form a line or series of lines. If the sound sources are at right angles to each other, the troughs form an evenly spaced set of rows and columns like a checkerboard. Here too, the particles are pushed until they reach the location where the sound is no longer moving.

Researchers tested the device using 1.9 micrometer polystyrene beads, red blood cells from cows and E. coli bacteria.

"Most cells or particles patterned in a few seconds," said Tony Jun Huang, assistant professor of engineering science and mechanics at Penn State. "The energy used is very low and the acoustic tweezers should not damage cells at all. Because they have different properties, the acoustic tweezers could also separate live from dead cells, or different types of particles."

The notion of tiny manipulators is a very handy idea. Science fiction writers have been busily imagining them for decades. More recently, fans may recall the sonic screw driver from the Dr. Who series.


(Dr. Who's sonic screwdriver)

From Eurekalert; thanks to Moira for pointing this story out.

Scroll down for more stories in the same category. (Story submitted 9/1/2009)

Follow this kind of news @Technovelgy.

| Email | RSS | Blog It | Stumble | del.icio.us | Digg | Reddit |

Would you like to contribute a story tip? It's easy:
Get the URL of the story, and the related sf author, and add it here.

Comment/Join discussion ( 0 )

Related News Stories - (" Biology ")

Oil from Algae - Can It Be Done?
'We dump everything that's waste into the tanks, pump the oil off the top.' - Hal Clement, 1950.

Amazing 'Hybrid' Solar-Powered Sea Slug Does Photosynthesis
Thank goodness for Star Trek.

Should You Submit Your DNA To A Database?
Consumer DNA services are often inaccurate.

Humans Evolve Deep Diving Abilities
Sounds like '60s sci-fi to me.

 

Google
  Web TechNovelgy.com   

Technovelgy (that's tech-novel-gee!) is devoted to the creative science inventions and ideas of sf authors. Look for the Invention Category that interests you, the Glossary, the Invention Timeline, or see what's New.

 

 

 

 

 

Current News

Wound Healing With Wearable Nanogenerators
'... forcing the energy transfer which allowed him to ... erase the other internal-external damage.'

Flying Dragon Robot Transforms In Mid-Air
Terrific prototype video.

Negative Matter Fluid Theorized In New Paper
'Of course, being negative matter, when you push it, it comes toward you..'

Grow Structures Upon Planetfall - Myco-Architecture
'They'll also start pulling in gases and liquids from the local atmosphere...'

MXene Hydrogel Skin For Robots Flexes And Senses
'The plastex swam and whirled like boiling toothpaste...'

EXPLORER, The First Total-Body Scanner
'The object is built up of an infinite series of plane layers, at the focus of the ray...'

UK Police AI To Stop Criminals Before They Strike
'... the computing mechanisms that studied and restructured the incoming material.'

Sonitus Audio Interface Positioned Beyond The Noise
'... an instrument having relatively small bit pieces adapted to be gripped between the teeth.'

Volvo's Self-Driving Mining Trucks
'A procession of automatic ore carts was racing over the bleak slag'

Audi Pop.Up Autonomous Electric Flying Car
'The cab was an egg-shaped bubble of light metals and plastics...'

Music Not Impossible (MNI) Vibrotactile Wearable Experience
Don't you want to experience the 'feely' effects?

Chinese Face Recognition Mistakes Bus Ad For Jaywalker
'... the imprint of her image on the telephoto cell.'

A Look Back At Apollo's Emergency Escape Vehicle
'A simple mechanism... it drove the iron ball through space like a ship.'

InMotion Glide 3 Electric Unicycle For The Last Mile
'...gyro-stabilized on a single wheel.'

China's Social Credit System - A Facebook-1984 Mashup
'Prestige, face, mana, repute, glory: the Sirenese word is strakh.'

Musk Declares Tesla Supercharger Capacity Will Double By Next Year
'Recharge the batteries... in almost every town and village...'

More SF in the News Stories

More Beyond Technovelgy science news stories

Home | Glossary | Invention Timeline | Category | New | Contact Us | FAQ | Advertise |
Technovelgy.com - where science meets fiction™

Copyright© Technovelgy LLC; all rights reserved.